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Abstract
Convolution is the most time consuming computation kernel
in Convolutional Neural Network (CNN) applications and the
majority of Graph Neural Network (GNN) applications. To
achieve good convolution performance, current NN libraries
such as cuDNN usually transform the naive convolution
problem into either the matrix vector multiplication form,
called the 𝑖𝑚2𝑐𝑜𝑙 +𝑀𝑀 approach, or into the Fourier domain
representation, namely the FFT approach. Both approaches
either introduce significant amount of data redundancy to
reduce the number of data passes and to leverage highly
tuned linear algebra libraries, or avoid data redundancy but
require multiple passes on input. Therefore, no implemen-
tation of convolution can outperform others in all cases. In
this paper, we introduce a novel transformation that reinter-
prete the convolution in NN as a polynomial multiplication
problem. By carefully constructing a number of conceptual
polynomials, NN’s convolution essentially becomes a well-
known problem of calculating the coefficients in the product
of two polynomials. We evaluate our approach in multiple
ways: at the API level comparing it with one of the most
widely used NN libraries cuDNN, as well as implementing it
in PyTorch and comparing the performance with benchmark
networks. On three NVIDIA GPUs 3090Ti, V100 and A10G,
our approach outperforms cuDNN over a broad range of
parameters with the max speedups of 34.6%, 43.1% and 33.6%
on these GPUs, respectively.
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1 Introduction
It is well known that in many neural network types, the most
time consuming computation step is the convolution. For
example, Convolutional Neural Network [11], a widely used
network type, typically spend over 92% [5, 7, 8, 13, 16, 19,
20] of the total execution time on convolution. As another
example, among Graph Neural Network (GNN) applications
[1], an increasingly popular form of neural network, the
majority have convolution as the performance bottleneck [2].
Therefore, optimizing convolution’s performance natu-

rally becomes a focus in the efforts that try to improve the
implementation efficiency of neural networks (NN). Here we
briefly overview how convolution is implemented in neural
network libraries, and discuss the data/memory efficiency
and operational efficiency of the typical technical paths. This
discussionwill provide a context for us to introduce ourwork,
and help explaining where we innovate and improve.

We would like to focus the comparison on two important
performance parameters: data redundancy and operational
efficiency. Here the data redundancy means the duplication
of data in an approach. In other words, how a value, ei-
ther from the network input or from the filter kernels, is
represented and/or stored multiple times in an implemen-
tation. Data redundancy is typically introduced to facilitate
the translation of convolution into other computation rou-
tines. Even the redundant data may be only conceptually
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represented and not be actually created in memory, the num-
ber of memory transfers required is still determined by the
conceptual redundancy. On today’s computer systems, the
transfer of data can be more expensive than the storage of it.
Furthermore, the operational efficiency can be divided into
the degree of operation redundancy and practical efficiency.
The operation redundancy means how the same information
is computed wholly or partially multiple times. The practical
efficiency means whether the operations, and the derived
memory access patterns, can be efficiently implement on
today’s computer systems.
First as the baseline, let’s look at the the naive defini-

tion of convolution in 2D. With input I of dimension [𝐼ℎ, 𝐼𝑤]
and filter K of dimension [𝐾ℎ, 𝐾𝑤], convolution is defined
as 𝑐𝑜𝑛𝑣2𝐷 (𝐼 , 𝐾) (𝑖ℎ,𝑖𝑤 ) =

∑𝐾ℎ−1
𝑘ℎ=0

∑𝐾𝑤−1
𝑘𝑤=0 𝐼 [𝑖ℎ + 𝑘ℎ, 𝑖𝑤 + 𝑘𝑤] ∗

𝐾 [𝑘ℎ, 𝑘𝑤]. Practical implementations of convolution, how-
ever, do not follow this naive definition because it implies
memory access patterns that are highly inefficient on today’s
computer architectures.

In the field of neural networks, the practical implementa-
tions of 2D convolution are generally based on two methods-
𝑖𝑚2𝑐𝑜𝑙 + 𝑀𝑀 [3, 8] and 𝐹𝐹𝑇 − 𝑏𝑎𝑠𝑒𝑑 [14]. For example,
cuDNN, one of the widest used NN libraries, employs both
methods and their variants such as the Winograd method
[10] to implement 2D convolution. The two methods and
their variants are not universally optimal, i.e., in some scenar-
ios, one is better than others and vice versa. This is because
the methods have different degrees of data redundancy and
operational efficiency that are determined by parameters
such as input size, kernel size, etc.

The 𝑖𝑚2𝑐𝑜𝑙 +𝑀𝑀 method tries to take advantage of highly
tuned matrix multiply (MM) libraries to implement convolu-
tion. To transform the problem, the 𝑖𝑚2𝑐𝑜𝑙 process unrolls
and duplicates the input matrix elements in a way that con-
volution can be done by multiplying the transformed matrix
with the unrolled kernel vector. The 𝑖𝑚2𝑐𝑜𝑙 method benefits
from the high-performanceMM libraries such as cuBLAS, but
pays the hefty price of high data redundancy. The FFT-based
method uses the well-known theory that convolution can
be converted to element-wise multiplication in the Fourier
domain. Therefore, FFT-based method reduces the time com-
plexity of 2D convolutions but requires performing 1D FFT,
and also the inverse FFT, on each row and column of the
matrices. It has complex computation flows. Especially for
smaller input and kernel sizes, the FFT-based methods are
generally less efficient than the 𝑖𝑚2𝑐𝑜𝑙 method.
A recently developed approach [21] takes advantage of

the discovery that the 𝑖𝑚2𝑐𝑜𝑙 transformed input forms a
doubly blocked Hankel [17] matrix, therefore the multipli-
cation of such a matrix with kernels can be improved by
converting it to iterative finer-grain block level FFTs. How-
ever, this approach still conducts redundant FFTs on the
block level, and requires data padding for each block to the

next power-of-two size. Essentially a portion of data redun-
dancy is transformed into some computational redundancy.
If well tuned, it can achieve a better tradeoff.
To summarize the existing implementation paths, they

either introduce data redundancy to convert convolution
into a simpler and more efficiently computation routine, or
avoid data duplication but resolve to multiple passes of data
and information-wise redundant operation flows.

Our starting point was a curious observation of a missing
piece in the state of the art in convolution implementation.
It is widely known that beside the linear algebra interpreta-
tion, i.e., the 𝑖𝑚2𝑐𝑜𝑙 method, and the Fourier domain inter-
pretation, i.e., the 𝐹𝐹𝑇 -based method, convolution can also
be interpreted as a polynomial multiplication coefficient-
finding problem. That is, the input data and the kernel in
convolution can be mapped into two polynomials, and the
convolution between the input and the kernel will become
the coefficients in the multiplication of the input polynomial
and the kernel polynomial.
However, while theoretically equivalent to 𝑖𝑚2𝑐𝑜𝑙 and

𝐹𝐹𝑇 methods, no practical convolution implementations
seem to adopt this polynomial interpretation. For example,
𝑐𝑢𝐷𝑁𝑁 has eight different methods that users can choose
from. Among the methods , four are 𝑖𝑚2𝑐𝑜𝑙 and its variants,
and the others are 𝐹𝐹𝑇 and the variants.

The missing of the polynomial interpretation is not from
negligence, we believe. The reason is that it is hard to come
up with an efficient mapping from convolution’s input and
kernel to the polynomials. First of all, while the 1D convo-
lution has a simple and naive mapping into the polynomial
domain, the construction of a valid mapping for 2D is not
arbitrary nor trivial. Secondly, a valid mapping essentially
determines how memory is accessed, as well as the amount
and sequence of operation. This makes it more challenging
to find a valid mapping that is also efficient to implement.
For example, the simplest, generic polynomial interpreta-
tion of 2D convolution essentially would be equivalent to
a 2D FFT problem. As such, its implementation would be
same as the existing 𝐹𝐹𝑇 -based implementation of convo-
lution. In other words, while the polynomial interpretation
provides a new way to represent convolution, the generic
representations/mappings do not provide any advantage in
performance. This is probably why such a powerful concep-
tual model of convolution is not leveraged by practitioners.
We realized that the potential of polynomial represen-

tation hasn’t really been touched. Our insight is that the
generic polynomial mapping of 2D convolution fails to lever-
age the intrinsic structures in the handling of input and
kernel in convolution. A mapping tailored for these intrinsic
structures, if can be correctly constructed, will naturally lead
to higher implementation efficiency for convolution.
Our key idea, as well as our main contribution, is

that we meticulously construct a conceptual polynomial for
the 𝑖𝑚2𝑐𝑜𝑙 matrix and another polynomial for the kernel in
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Table 1. Summary of Notations

Name Description
K Number of kernels
𝐼ℎ Input height
𝐼𝑤 Input width
𝐾ℎ Kernel height
𝐾𝑤 Kernel width
𝑂ℎ Output height
𝑂𝑤 Output width
P Padding
C Input channels
N Mini-batch size

a special way, so that convolution, originally in the form
of the multiplication between the 𝑖𝑚2𝑐𝑜𝑙 matrix and the
kernel, can be converted into the form of an implementation-
wise efficient polynomial multiplication coefficient-finding
problem. Importantly, the polynomial coefficient problem
in our work can then be solved as a single 1𝐷 FFT problem.
Therefore, we can achieve better performance by avoiding
the data redundancy in the 𝑖𝑚2𝑐𝑜𝑙 method and the iterative
operation redundancy in the 2𝐷 − 𝐹𝐹𝑇 -based method.
More specifically, our work is based on two known sig-

nal/data processing and algorithm design techniques, i.e.,
the polynomial interpretation of linear algebra [6, 12], and
the Fourier domain solution for polynomial coefficient prob-
lem. We tailor the first technique specifically for the 𝑖𝑚2𝑐𝑜𝑙
matrix, and use the second technique to build the actual
FFT based implementation. These polynomials are carefully
designed so that the coefficients of certain terms in their prod-
uct are precisely the results of multiplying the 𝑖𝑚2𝑐𝑜𝑙 matrix
with the unfolded kernel, which also equals correspondingly
to the 2D convolution results. Notably, the 𝑖𝑚2𝑐𝑜𝑙 form of
input and the polynomials are only needed in the concep-
tual deduction, and are not actually built in implementation.
Therefore, our method doesn’t need to redundantly expand
input and kernel, nor need to compute FFT and inverse FFT
for each row and column separately. Essentially, our “secret
sauce” is that in total we only need to conduct one FFT on
the original (not expanded) input, one element-wise multi-
plication, and one inverse FFT to calculate convolution. As
the result, we minimize the number of passes over the input,
and require much less memory storage or transfer overhead
than what is needed in the 𝑖𝑚2𝑐𝑜𝑙 , 𝐹𝐹𝑇 or the Hankel matrix
based methods.

2 Method
Let’s first briefly introduce the overall working flow of how
we calculate convolution. To help relate to other work, the
deep- learning domain notations used in this paper are sum-
marized in Table 1.
Our work starts with a conceptual transformation of the

convolution into the multiplication between a matrix and
a vector. The matrix is transformed from the input and the

vector transformed from the kernel in neural network. Asmo-
tioned earlier, this matrix-vector based approach is referred
as the 𝑖𝑚2𝑐𝑜𝑙 +𝑀𝑀 method and is not new here. Although
our idea is based on the 𝑖𝑚2𝑐𝑜𝑙 transformation, we want to
highlight that 𝑖𝑚2𝑐𝑜𝑙 serves only as a purely conceptual con-
struction that our work derives from. In our implementation,
we actually never conduct the 𝑖𝑚2𝑐𝑜𝑙 step to the input or
the filter, so not suffering from the redundancy associated
with 𝑖𝑚2𝑐𝑜𝑙 .

The second step is the transformation of the matrix-vector
multiplication form of convolution into a polynomial multi-
plication problem. This is the key contribution of our work
in this paper. Zhang et.al report that the matrices gener-
ated from 𝑖𝑚2𝑐𝑜𝑙 all have doubly layered redundancy pat-
terns, and both layers follow the definition of the Hankel
matrix [17]. We realize that the doubly Hankel pattern of the
matrix make it possible to construct an interesting mapping
from the element indices in the matrix to the exponents in
a virtual polynomial, as well as a mapping for the kernel-
derived vector, so that the matrix-vector multiplication form
of convolution is transformed into the multiplication of two
polynomials. And very interestingly, the mappings can be
constructed in such a way that the coefficients of the result
polynomial are exactly the result of the convolution that is
intended to be calculated in the first place.

The third step of our work is how we solve the polynomial
multiplication form of convolution. The generic polynomial
multiplication is awell known problem, and its solution using
FFT is also a well known technique. In our work, we mainly
follow the known FFT solution with some implementation
details adapted for the convolution-derived specifics.

2.1 Redundancy of im2col Matrix

In this section, we will explain the im2col process and why
the im2col matrix constructed is a doubly blocked Hankel
matrix. This information is crucial as it provides the neces-
sary background for the introduction of howwe conceptually
map the 𝑖𝑚2𝑐𝑜𝑙 result matrix into polynomials.

The im2col operation stands for "image to column". Its goal
is to reformat the input matrix in NN, so that the convolution
in NN can be converted into matrix-vector multiplication. It
stretches or unrolls the local receptive field or patch that the
kernel slides over into columns. Each column corresponds to
a different patch of the input data. As the kernel slides in 2D
convolution, the im2col operation is applied at each position
of the kernel overlayed on the input. The generated columns
are placed side by side and concatenated with other columns
to form a matrix. The number of columns in this matrix is
equal to the number of positions the kernel can take as it
slides over the input. Thus, an input image is transformed
into a matrix where each column represents a patch and the
convolution can then be performed as matrix multiplication.
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0 0 0 0 0

0 1 2 3 0

0 4 5 6 0

0 7 8 9 0

0 0 0 0 0

im2col

0 0 0 0 0 1 2 3 0 4 5 6 0 7 8 9

0 0 0 0 1 2 3 0 4 5 6 0 7 8 9 0

0 1 2 3 0 4 5 6 0 7 8 9 0 0 0 0

1 2 3 0 4 5 6 0 7 8 9 0 0 0 0 0

Figure 1. A 3×3 input with zero-padding of size 1 convolves
with a 2× 2 kernel (shown in dotted lines on the left). On the
right is the unrolled matrix generated by the im2col process.

The matrices that the im2col operation generates have
intricate patterns, and also introduce degree of data redun-
dancy. Due to the overlap in the sliding window opera-
tion, the unrolled columns have many elements in common.
Specifically, as each row of the kernel slides horizontally,
the adjacent unrolled columns differ only in one element
corresponding to the new element added at the right side of
the row kernel. It creates a pattern that resembles a Hankel
matrix. Hankel matrix is a type of matrix in which each value
along ascending skew-diagonals are constant. In im2col, the
kernel moves one step at a time across the input horizontally
until it reaches the rightmost position, then the kernel resets
to the leftmost position on the subsequent row below, and
the kernel continues moving from left to right. Similarly,
the corresponding columns repeats most of their elements
differing only in the elements corresponding to the bottom
row of the kernel. In this repetitive pattern, a doubly blocked
Hankel matrix is formed. It is doubly blocked because not
only the overall structure consisting of the blocks formed by
the kernel sweeping possesses the Hankel pattern, but also
each individual block is a Hankel matrix.

Figure 1 illustrates the convolution of a 3 × 3 input matrix
with a zero-padding of size 1 using a 2 × 2 kernel. Initially
the kernel is positioned at the top-left corner of the input
(indicated by the red dotted line), the kernel slides one step
to the right (green dotted line). The corresponding unrolled
columns are represented on the right side of the figure by
matching dotted lines. As the kernel continues to slide to the
bottom right corner of the input, the full unrolled matrix is
formed. Clearly, this figure reveals the intrinsic data pattern
as a doubly Hankel matrix. Each block that shares the same
color is identical, and elements within each block remain
constant along the skew diagonals.
Hankel matrices have many nice properties that may be

used to simplify calculation or reduce memory storage. The
most useful property for our work is that Hankel matrices
are structured and can be described more concisely than the
𝑛2 elements in a 𝑛∗𝑛 matrix, without any loss of information.
Next we will use this concise representation of the doubly
blocked Hankel matrices to design equally concise polyno-
mial representation of these specific matrices, so that the
conceptual multiplication of the matrices with kernel vectors
can be reformed into the multiplication of the concise poly-
nomial representation of the matrices and the constructed
polynomials for the kernel vectors.

2.2 Polynomial Construction
Next wewill describe howwe construct the polynomials mul-
tiplication problem for convolution. We will start with going
through our approach with a small convolution problem,
and then develop the example into a general solution.
Let us start with a simplest neural network problem in-

volving a 5 × 5 image and a 3 × 3 kernel. The input image
can be represented as:

𝐴 =

©«
𝑎0,0 𝑎0,1 𝑎0,2 𝑎0,3 𝑎0,4
𝑎1,0 𝑎1,1 𝑎1,2 𝑎1,3 𝑎1,4
𝑎2,0 𝑎2,1 𝑎2,2 𝑎2,3 𝑎2,4
𝑎3,0 𝑎3,1 𝑎3,2 𝑎3,3 𝑎3,4
𝑎4,0 𝑎4,1 𝑎4,2 𝑎4,3 𝑎4,4

ª®®®®®¬
and the kernel as:

𝑈 =
©«
𝑢0,0 𝑢0,1 𝑢0,2
𝑢1,0 𝑢1,1 𝑢1,2
𝑢2,0 𝑢2,1 𝑢2,2

ª®¬
The convolution between 𝐴 and 𝑈 , if there is no padding,

then will produce a 3 × 3 matrix 𝐷 , as:

𝑂𝑤/ℎ = 𝐼𝑤/ℎ − 𝐾𝑤/ℎ + 1
Following the naive definition of convolution, we have

𝐷𝑖, 𝑗 = 𝑐𝑜𝑛𝑣2𝐷 (𝐴,𝑈 ) (𝑖, 𝑗 ) =
∑𝑈 −1
𝑢=0

∑𝑉 −1
𝑣=0 𝐴[𝑖+𝑢, 𝑗 +𝑣] ∗𝑈 [𝑢, 𝑣].

The naive definition of 𝐷 is not good for actual imple-
mentation, because it requires multiple passes over the input
and the kernel matrices and implies memory accesses with
varying strides, both of which will drag on performance.
Convolution can be transformed into a matrix-vector mul-
tiplication after we expand and duplicate the input matrix
through the 𝑖𝑚2𝑐𝑜𝑙 process. In our example, the transformed
input matrix 𝐴𝑖𝑚2𝑐𝑜𝑙 will look like the following:

𝐴𝑖𝑚2𝑐𝑜𝑙 =©«

©«
𝑎0,0 𝑎0,1 𝑎0,2
𝑎0,1 𝑎0,2 𝑎0,3
𝑎0,2 𝑎0,3 𝑎0,4

ª®®®¬
©«
𝑎1,0 𝑎1,1 𝑎1,2
𝑎1,1 𝑎1,2 𝑎1,3
𝑎1,2 𝑎1,3 𝑎1,4

ª®®®¬
©«
𝑎2,0 𝑎2,1 𝑎2,2
𝑎2,1 𝑎2,2 𝑎2,3
𝑎2,2 𝑎2,3 𝑎2,4

ª®®®¬©«
𝑎1,0 𝑎1,1 𝑎1,2
𝑎1,1 𝑎1,2 𝑎1,3
𝑎1,2 𝑎1,3 𝑎1,4

ª®®®¬
©«
𝑎2,0 𝑎2,1 𝑎2,2
𝑎2,1 𝑎2,2 𝑎2,3
𝑎2,2 𝑎2,3 𝑎2,4

ª®®®¬
©«
𝑎3,0 𝑎3,1 𝑎3,2
𝑎3,1 𝑎3,2 𝑎3,3
𝑎3,2 𝑎3,3 𝑎3,4

ª®®®¬©«
𝑎2,0 𝑎2,1 𝑎2,2
𝑎2,1 𝑎2,2 𝑎2,3
𝑎2,2 𝑎2,3 𝑎2,4

ª®®®¬
©«
𝑎3,0 𝑎3,1 𝑎3,2
𝑎3,1 𝑎3,2 𝑎3,3
𝑎3,2 𝑎3,3 𝑎3,4

ª®®®¬
©«
𝑎4,0 𝑎4,1 𝑎4,2
𝑎4,1 𝑎4,2 𝑎4,3
𝑎4,2 𝑎4,3 𝑎4,4

ª®®®¬

ª®®®®®®®®®®¬
(1)

Correspondingly, we need to fully flatten the kernel matrix
into a vector as defined in Eq. 2.

𝑈𝑖𝑚2𝑐𝑜𝑙 = ( 𝑢0,0 𝑢0,1 𝑢0,2 𝑢1,0 𝑢1,1 𝑢1,2 𝑢2,0 𝑢2,1 𝑢2,2 )𝑇 (2)
It then becomes clear that if we multiply the transformed

input matrix 𝐴𝑖𝑚2𝑐𝑜𝑙 and the flattened kernel matrix 𝑈𝑖𝑚2𝑐𝑜𝑙 ,
i.e., 𝐷𝑖𝑚2𝑐𝑜𝑙 = 𝐴𝑖𝑚2𝑐𝑜𝑙 × 𝑈𝑖𝑚2𝑐𝑜𝑙 , 𝐷𝑖𝑚2𝑐𝑜𝑙 is exactly the flat-
tened convolution output 𝐷 = 𝑐𝑜𝑛𝑣2𝐷 (𝐴,𝑈 ), as Eq. 3 shows.

𝐷𝑖𝑚2𝑐𝑜𝑙 = 𝐴𝑖𝑚2𝑐𝑜𝑙 ×𝑈𝑖𝑚2𝑐𝑜𝑙
= ( 𝑑0,0 𝑑0,1 𝑑0,2 𝑑1,0 𝑑1,1 𝑑1,2 𝑑2,0 𝑑2,1 𝑑2,2 )𝑇
= 𝑓 𝑙𝑎𝑡𝑡𝑒𝑛𝑒𝑑 (𝑐𝑜𝑛𝑣2𝐷 (𝐴,𝑈 ))

(3)
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Our idea started with a curious exploration to represent
the convolution in a polynomial form. It is based on the
known technique that matrices and vectors can be encoded
as polynomials and their multiplication operations can be
formulated as the multiplication between polynomials
[12]. Our main challenge along this route is what kind of
polynomials we should construct for the input matrix and
the kernel vector in convolution.
We start with a pretty plain polynomial construction for

the input matrix 𝐴. For the element 𝐴𝑖, 𝑗 , it will be multiplied
with 𝑡𝑘 , where 𝑡 is an indeterminate symbol representing
no particular value and 𝑘 = 𝑖 × 𝐼𝑤 + 𝑗 . In other words, the
input matrix element 𝐴𝑖, 𝑗 becomes the coefficient of the 𝑘𝑡ℎ
power of 𝑡 . Note that each pair [𝑖, 𝑗] uniquely corresponds
to a specific 𝑘 , and vice versa. Therefore, the polynomial
representation of the input matrix in the example can be
depicted as Eq. 4.

𝐴(𝑡) = 𝑎0,0𝑡0 + 𝑎0,1𝑡1 + 𝑎0,2𝑡2 + 𝑎0,3𝑡3 + 𝑎0,4𝑡4

+ 𝑎1,0𝑡5 + 𝑎1,1𝑡6 + 𝑎1,2𝑡7 + 𝑎1,3𝑡8 + 𝑎1,4𝑡9

+ 𝑎2,0𝑡10 + 𝑎2,1𝑡11 + 𝑎2,2𝑡12 + 𝑎2,3𝑡13 + 𝑎2,4𝑡14

+ 𝑎3,0𝑡15 + 𝑎3,1𝑡16 + 𝑎3,2𝑡17 + 𝑎3,3𝑡18 + 𝑎3,4𝑡19

+ 𝑎4,0𝑡20 + 𝑎4,1𝑡21 + 𝑎4,2𝑡22 + 𝑎4,3𝑡23 + 𝑎4,4𝑡24

(4)

The next question then becomes how we should construct
the polynomial form for the kernel matrix or vector. The
goal for the construction is that when we multiply the input
polynomial and the kernel polynomial, the coefficients in
the resultant polynomial are exactly the result of applying
convolution between the input and the kernel.

The 𝑖𝑚2𝑐𝑜𝑙 process provides a proper conceptual basis for
solving this problem. Based on the polynomial representation
of 𝐴 in Eq. 4, we can first construct the polynomial form for
the 𝑖𝑚2𝑐𝑜𝑙 matrix 𝐴𝑖𝑚2𝑐𝑜𝑙 by multiplying the input elements
of 𝐴𝑖𝑚2𝑐𝑜𝑙 in Eq. 1 with their corresponding degrees of the
indeterminate 𝑡 in Eq. 4. Therefore, the polynomial form of
𝐴𝑖𝑚2𝑐𝑜𝑙 , named 𝐴𝑡

𝑖𝑚2𝑐𝑜𝑙 , can be defined as in the following
Eq. 5, where ⊙ is the element-wise product of matrices.

𝐴𝑡
𝑖𝑚2𝑐𝑜𝑙 = 𝐴𝑖𝑚2𝑐𝑜𝑙⊙

©«

©«
𝑡0 𝑡1 𝑡2

𝑡1 𝑡2 𝑡3

𝑡2 𝑡3 𝑡4
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𝑡10 𝑡11 𝑡12
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𝑡21 𝑡22 𝑡23
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(5)

We already know that 𝐴𝑖𝑚2𝑐𝑜𝑙 ×𝑈𝑖𝑚2𝑐𝑜𝑙 equals the convo-
lution between 𝐴 and 𝑈 . Therefore, for the construction of
the polynomial form of the kernel vector 𝑈𝑖𝑚2𝑐𝑜𝑙 , we want
the degree of 𝑡 in the result polynomial for the inner prod-
uct between each row of 𝐴𝑖𝑚2𝑐𝑜𝑙 and𝑈𝑖𝑚2𝑐𝑜𝑙 to be the same

and different rows of 𝐴𝑖𝑚2𝑐𝑜𝑙 will produce different degrees.
In this way, the coefficients in the result polynomial will
be exact the result of convolution. For 𝑈 , we can similarly
construct𝑈𝑡 in a corresponding manner. Let us explain this
desired property using the first two rows of 𝐴𝑡

𝑖𝑚2𝑐𝑜𝑙 in our
example. The first two rows are:

𝑟𝑜𝑤0 = ( 𝑎0,0𝑡0 𝑎0,1𝑡1 𝑎0,2𝑡2 𝑎1,0𝑡5 𝑎1,1𝑡6 𝑎1,2𝑡7 𝑎2,0𝑡10 𝑎2,1𝑡11 𝑎2,2𝑡12 )

𝑟𝑜𝑤1 = ( 𝑎0,1𝑡1 𝑎0,2𝑡2 𝑎0,3𝑡3 𝑎1,1𝑡6 𝑎1,2𝑡7 𝑎1,3𝑡8 𝑎2,1𝑡11 𝑎2,2𝑡12 𝑎2,3𝑡13 )
A general polynomial form of𝑈𝑖𝑚2𝑐𝑜𝑙 can be written as:

( 𝑢0,0𝑡𝑒0 𝑢0,1𝑡𝑒1 𝑢0,2𝑡𝑒2 𝑢1,0𝑡𝑒3 𝑢1,1𝑡𝑒4 𝑢1,2𝑡𝑒5 𝑢2,0𝑡𝑒6 𝑢2,1𝑡𝑒7 𝑢2,2𝑡𝑒8 )𝑇

𝑒0...𝑒8 are the degrees of the polynomial terms. However, an
arbitrary polynomial form won’t work, in other words, the
degrees in the polynomial form of𝑈𝑖𝑚2𝑐𝑜𝑙 , i.e., 𝑒0...𝑒8 in this
example, must be carefully selected. Assuming we already
had a desired polynomial for𝑈𝑖𝑚2𝑐𝑜𝑙 named𝑈 𝑡

𝑖𝑚2𝑐𝑜𝑙 , what we
want then is that 𝑟𝑜𝑤0 ·𝑈 𝑡𝑖𝑚2𝑐𝑜𝑙 = 𝑑0,0𝑡

𝑖 , and 𝑟𝑜𝑤1 ·𝑈 𝑡𝑖𝑚2𝑐𝑜𝑙 =

𝑑0,1𝑡
𝑗 . Importantly, the degrees 𝑖 and 𝑗 can be any values but

must be different from each other, i.e., 𝑖 ≠ 𝑗 . More broadly
speaking, we want the inner product between each row of
𝐴𝑡
𝑖𝑚2𝑐𝑜𝑙 and the to-be-constructed 𝑈 𝑡

𝑖𝑚2𝑐𝑜𝑙 produce only a
single polynomial term, i.e., 𝑐𝑜𝑒 𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑡 ×𝑡𝑖 , and the degrees
of the term 𝑖 are different for different rows. Therefore, the
coefficients of all such resultant polynomial terms will be
exactly the result of convolution.

There are more than one polynomial form of 𝑈𝑖𝑚2𝑐𝑜𝑙 that
can satisfy the requirements. Let us look at two 𝑈 𝑡

𝑖𝑚2𝑐𝑜𝑙 ’s
that can both work for the calculation of convolution in our
example. Then we will describe the general way to construct
the polynomial for the kernel vector.

𝑈 𝑡
𝑖𝑚2𝑐𝑜𝑙 = ( 𝑢0,0𝑡12 𝑢0,1𝑡11 𝑢0,2𝑡10 𝑢1,0𝑡7 𝑢1,1𝑡6 𝑢1,2𝑡5 𝑢2,0𝑡2 𝑢2,1𝑡1 𝑢2,2𝑡0 )𝑇

(6)
If we conduct the polynomial multiplication between

𝐴𝑡
𝑖𝑚2𝑐𝑜𝑙 and𝑈

𝑡
𝑖𝑚2𝑐𝑜𝑙 , we get 𝐷𝑡

𝐷𝑡 = 𝐴
𝑡
𝑖𝑚2𝑐𝑜𝑙 ×𝑈

𝑡
𝑖𝑚2𝑐𝑜𝑙 =

( 𝑑0,0𝑡12 𝑑0,1𝑡13 𝑑0,2𝑡14 𝑑1,0𝑡17 𝑑1,1𝑡18 𝑑1,2𝑡19 𝑑2,0𝑡22 𝑑2,1𝑡23 𝑑2,2𝑡24 )𝑇
(7)

Upon examining the result of the polynomial multiplication,
it becomes apparent that for any given row of 𝐴𝑡

𝑖𝑚2𝑐𝑜𝑙 , when
it is multiplied by 𝑈 𝑡

𝑖𝑚2𝑐𝑜𝑙 , the power of 𝑡 in each resultant
element is the same. This allows for their addition into a
single polynomial term for a row. Moreover, in the resulting
vector 𝐷𝑡 , the power of 𝑡 in each element is unique. And
importantly, the coefficients of all the different polynomial
terms in 𝐷𝑡 are exactly the same element as in the vector
𝑓 𝑙𝑎𝑡𝑡𝑒𝑛𝑒𝑑 (𝑐𝑜𝑛𝑣2𝐷 (𝐴,𝑈 )).
Let us look at an alternative polynomial form for𝑈𝑖𝑚2𝑐𝑜𝑙 :

𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑈 𝑡
𝑖𝑚2𝑐𝑜𝑙 =

( 𝑢0,0𝑡19 𝑢0,1𝑡18 𝑢0,2𝑡17 𝑢1,0𝑡14 𝑢1,1𝑡13 𝑢1,2𝑡12 𝑢2,0𝑡9 𝑢2,1𝑡8 𝑢2,2𝑡7 )𝑇
(8)
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And we get the corresponding 𝐷𝑡
𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝐷𝑡 = 𝐴

𝑡
𝑖𝑚2𝑐𝑜𝑙 × 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑈

𝑡
𝑖𝑚2𝑐𝑜𝑙 =

( 𝑑0,0𝑡19 𝑑0,1𝑡20 𝑑0,2𝑡21 𝑑1,0𝑡24 𝑑1,1𝑡25 𝑑1,2𝑡26 𝑑2,0𝑡29 𝑑2,1𝑡30 𝑑2,2𝑡31 )𝑇
(9)

The result polynomial is different. However, its coefficients
are the same convolution vector that we want to calculate.
A general way to construct 𝑈 𝑡

𝑖𝑚2𝑐𝑜𝑙 can be derived from
the characteristic of doubly Hankel matrices. This specific
type of matrix has two layers of diagonals that are congru-
ent. A property derived from this two layer congruence is
that the vector of the elements’ linear index in each row is
mirror symmetric to the reverse of the same vector. This
property is the core of how we construct the kernel vector
polynomial. Let us still use the same example to illustrate
how this property is useful.

If we pay attention to the first row of 𝐴𝑡
𝑖𝑚2𝑐𝑜𝑙 in Eq. 5, it is

( 𝑎0,0𝑡0 𝑎0,1𝑡1 𝑎0,2𝑡2 𝑎1,0𝑡5 𝑎1,1𝑡6 𝑎1,2𝑡7 𝑎2,0𝑡10 𝑎2,1𝑡11 𝑎2,2𝑡12 )
If we extract the polynomial degree of 𝑡 into a vector it is

−−−−⇀
𝑅𝐷1𝑠𝑡 =

−−−−−−−−−−−−−−−−⇀
𝑓 𝑖𝑟𝑠𝑡_𝑟𝑜𝑤_𝑑𝑒𝑔𝑟𝑒𝑒 = ( 0 1 2 5 6 7 10 11 12 )

The elements in the vector are actually also the flattened in-
dex of the corresponding elements ( 𝑎0,0 𝑎0,1 𝑎0,2 𝑎1,0 𝑎1,1 𝑎1,2 𝑎2,0 𝑎2,1 𝑎2,2 )
Very importantly,

−−−−⇀
𝑅𝐷1𝑠𝑡 + 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 (

−−−−⇀
𝑅𝐷1𝑠𝑡 ) = ( 12 12 12 12 12 12 12 12 12 )

The sums 12 are all the same, and is actually the last value
in the row vector. Furthermore, when the reverse vector of
the first row’s degrees is added with the vector of degrees
in other rows, the sums are also the same for all other rows.
For example,

−−−−−⇀
𝑅𝐷2𝑛𝑑 =

−−−−−−−−−−−−−−−⇀
2𝑛𝑑_𝑟𝑜𝑤_𝑑𝑒𝑔𝑟𝑒𝑒 = ( 1 2 3 6 7 8 11 12 13 )

and
−−−−−⇀
𝑅𝐷2𝑛𝑑 + 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 (

−−−−⇀
𝑅𝐷1𝑠𝑡 ) = ( 13 13 13 13 13 13 13 13 13 )

The sum 13 is also the last value in the second row vector.
This property leads to a general way to construct the

polynomial form for 𝑈𝑖𝑚2𝑐𝑜𝑙 as the element-wise product of
𝑈𝑖𝑚2𝑐𝑜𝑙 and 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 (

−−−−−−−−−−⇀
𝑟𝑜𝑤_𝑑𝑒𝑔𝑟𝑒𝑒), i.e.,

𝑈 𝑡
𝑖𝑚2𝑐𝑜𝑙 = 𝑈𝑖𝑚2𝑐𝑜𝑙 ⊙ 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 (

−−−−−−−−−−⇀
𝑟𝑜𝑤_𝑑𝑒𝑔𝑟𝑒𝑒)

Actually the first kernel polynomial construction example
in Eq. 6 exactly comes from here.
We don’t need to exclusively use the first row for the

construction. All row vectors will work, just like how the
alternative 𝑈 𝑡

𝑖𝑚2𝑐𝑜𝑙 is constructed in Eq. 8. However, con-
structing with the first row is more efficiently to implement
because it simplifies the identification of the polynomial
terms whose coefficients are the result vector of convolu-
tion. If we use the first row vector, the degrees of the rel-
evant polynomial terms will be the last column of 𝐴𝑡

𝑖𝑚2𝑐𝑜𝑙 .
Let 𝑝𝑖 represent the coefficient of 𝑡𝑖 in 𝑃 (𝑡). In this exam-
ple, 𝑑0,0 = 𝑝12, 𝑑0,1 = 𝑝13, 𝑑0,2 = 𝑝14, 𝑑1,0 = 𝑝17, 𝑑1,1 = 𝑝18,

𝑑1,2 = 𝑝19, 𝑑2,0 = 𝑝22, 𝑑2,1 = 𝑝23, 𝑑2,2 = 𝑝24.
The vector of degrees of these terms ( 12 13 14 17 18 19 22 23 24 )
is exactly the degrees of the last column of 𝐴𝑡

𝑖𝑚2𝑐𝑜𝑙 in Eq. 5.
From here on, we will only use the construction with the
first row vector.

With the construction of 𝐴𝑡
𝑖𝑚2𝑐𝑜𝑙 and𝑈

𝑡
𝑖𝑚2𝑐𝑜𝑙 , we success-

fully transform the calculation of convolution into a poly-
nomial multiplication problem. Now we can generalize the
construction to any size of input and kernel in neural net-
works. Conceptually the 𝑖𝑚2𝑐𝑜𝑙 matrix of the problem is
a doubly blocked Hankel matrix A, consisting of 𝑂ℎ × 𝐾ℎ
blocks, each of size 𝑂𝑤 × 𝐾𝑤 . The vector U, which is used
for multiplication, has a size of 𝐾ℎ × 𝐾𝑤 , and the resultant
vector 𝐷 has a size of 𝑂ℎ ×𝑂𝑤 . Based on this, we construct
the polynomials

𝐴(𝑡) =
𝑂ℎ+𝐾ℎ−2∑︁

𝑖=0

𝑂𝑤+𝐾𝑤−2∑︁
𝑗=0

𝑎𝑖, 𝑗𝑡
(𝑂𝑤+𝐾𝑤−1)×𝑖+𝑗 (10)

and

𝑈 (𝑡) =
𝐾ℎ−1∑︁
𝑖=0

𝐾𝑤−1∑︁
𝑗=0

𝑢𝑖, 𝑗𝑡
−(𝑂𝑤+𝐾𝑤−1)×𝑖− 𝑗+(𝑂𝑤+𝐾𝑤−1)×𝐾ℎ−𝑂ℎ−1

(11)
Then, we calculate 𝑃 (𝑡) = 𝐴(𝑡) ×𝑈 (𝑡). Finally, within the
coefficients of 𝑃 (𝑡), we construct the resultant vector 𝐷 . Let
𝑝𝑖 be the coefficient of 𝑡𝑖 in 𝑃

𝑑𝑖, 𝑗 =𝑝 (𝑂𝑤+𝐾𝑤−1)×𝑖+𝑗+(𝑂𝑤+𝐾𝑤−1)×𝐾ℎ−𝑂𝑤

0 ≤ 𝑖 < 𝑂ℎ, 0 ≤ 𝑗 < 𝑂𝑤
(12)

We want to emphasize that as Eq.s 10, 11 and 12 clearly
show, the input polynomial 𝐴(𝑡) and the kernel polynomial
𝑈 (𝑡) can be calculated directly from the input 𝐴 and the
kernel 𝑈 . Their calculation is not dependent on the prereq-
uisite that the input need to be transformed by the 𝑖𝑚2𝑐𝑜𝑙
process first. The 𝑖𝑚2𝑐𝑜𝑙 matrix transformed from input is
only used as a conceptual tool that facilitates the deduction
of the formulas. Therefore, our approach doesn’t incur the
data redundancy that 𝑖𝑚2𝑐𝑜𝑙 introduces.
2.3 Polynomial Multiplication Using FFT

After we transform the convolution problem in the form
of multiplying a doubly Hankel matrix with a vector into
a polynomial multiplication problem, we can use FFT to
solve it. Solving polynomial multiplication with FFT is a
well know and broadly used algorithmic technique. Here
we briefly overview the general FFT-based solution, and
the specifics when we apply the general technique to our
convolution-derived polynomial multiplication problem.

Suppose we have the following two generic polynomials,
𝑃 (𝑡) and 𝑄 (𝑡), where 𝑃 (𝑡) has a total of 𝑁 terms and 𝑄 has
𝑀 terms:

𝑃 (𝑡) =
𝑁−1∑︁
𝑖=0

𝑝𝑖𝑡
𝑖 𝑄 (𝑡) =

𝑀−1∑︁
𝑖=0

𝑞𝑖𝑡
𝑖 (13)
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The goal of the polynomial multiplication problem is to cal-
culate 𝑅(𝑡) = 𝑃 (𝑡)𝑄 (𝑡), more specifically, figuring out all the
terms in 𝑅(𝑡) including the coefficients and the degrees of
the terms.
There is a naive method for solving the problem, which

involves multiplying each term of P with every term of𝑄 (𝑡).
The time complexity of this naive method is 𝑂 (𝑀𝑁 ). How-
ever, it is known that FFT can be used to solve this prob-
lem. The FFT based method reduces the time complexity to
𝑂 ((𝑀 + 𝑁 ) log(𝑀 + 𝑁 )). The theoretical process of the FFT
method needs to evaluate the 𝑃 (𝑡) and 𝑄 (𝑡) polynomials
over the complex roots of unity.

In our method, the two polynomials are the𝐴(𝑡) and𝑈 (𝑡)
defined in Eq.s 10 and 11, respectively, i.e., 𝑃 (𝑡) = 𝐴(𝑡) and
𝑄 (𝑡) = 𝑈 (𝑡). We start with constructing two vectors, 𝑃 and
𝑄 , indexed by the powers of 𝑡 in 𝑃 (𝑡) and 𝑄 (𝑡) respectively,
with the coefficients of the t terms as their elements. 𝑃 and
𝑄 are also called coefficient vector form in literature. Subse-
quently, we pad the end of vector 𝑃 with 𝑀 − 1 zeros and
the end of vector 𝑄 with 𝑁 − 1 zeros, as follows

𝑃 = [𝑝0, 𝑝1, . . . , 𝑝𝑁−2, 𝑝𝑁−1, 0, . . . , 0︸  ︷︷  ︸
M-1 zeros

]

𝑄 = [𝑞0, 𝑞1, . . . , 𝑞𝑀−2, 𝑞𝑀−1, 0, . . . , 0︸  ︷︷  ︸
N-1 zeros

] (14)

Afterwards, we perform FFT operations on both 𝑃 and 𝑄 ,
obtaining 𝑃 and �̂� respectively. We then carry out a point-
wise multiplication of 𝑃 with �̂� , and perform an Inverse FFT
operation on the result to obtain the result vector 𝑅. The
elements of 𝑅 are the coefficients of the resultant polynomial
𝑅(𝑡), with their indices representing the powers of t. The
process can be summarized as follows:

𝑅 = IFFT(FFT(𝑃) · FFT(𝑄)) (15)

Then the coefficients of the terms with the degrees defined
in Eq. 12 are the result of the convolution.
2.4 Complexity Analysis

Next we will analyze the complexity of our approach and
also that of the 𝑖𝑚2𝑐𝑜𝑙 +𝑀𝑀 method and the traditional 𝐹𝐹𝑇
method. We will analyze both the operational complexity,
which is the number of operations, and also the space com-
plexity, which is the size of data storage or the number of
memory transfer needed, in the methods.
The complexity analysis is done on each step of all the

methods. The 𝑖𝑚2𝑐𝑜𝑙 method conducts matrix-vector multi-
plications on conceptually sliding-duplicated matrices and
the flattened kernel. The 𝐹𝐹𝑇 method conducts essentially a
2D-FFT on the padded input, a 2D-FFT the padded kernel, an
element-wisemultiplication, and a 2D-IFFT. PolyHankel does
two 1D-FFTs, one 1D-IFFT, and one element-wise multiplica-
tion based on the constructed input and kernel polynomials.

Table 2 and Table 3 list the time- and space-complexity of
the three methods. Typically 𝐼ℎ/𝑤 ≫ 𝐾ℎ/𝑤 , so 𝑂ℎ/𝑤 ≈ 𝐼ℎ/𝑤 .

It shows that our PolyHankel method has lower operational
and space complexity than FFT, and requires much smaller
extra memory overhead (either storage or transfers) com-
pared with the 𝑖𝑚2𝑐𝑜𝑙 +𝑀𝑀 method.
A place worth noting is that both the FFT-based method

and PolyHankel use padding. The complexity expressions
include the impact of padding. Specifically, both input and
kernel are padded to 𝐼ℎ ∗ 𝐼𝑤 +𝐾ℎ ∗ 𝐼𝑤 . That’s why the term 𝐼ℎ ∗
𝐼𝑤 +𝐾ℎ ∗ 𝐼𝑤 appears repeatedly in the complexity expression,
as it is the size of the padded FFT.

3 Implementation
In this section, we describe howwe adapt the implementation
for additional NN parameters and computer system factors.
3.1 Calculating The Degrees of Polynomial Terms
A key task in our approach is to calculate the degrees of
the relevant polynomial terms. The degrees are defined in
Eq.s 10, 11 and 12. If we strictly follow the equations, the
calculation will not be efficient. In our practical implemen-
tation, we use a mapping method to generate the powers
of 𝑡 , which allows for a more intuitive construction of poly-
nomials. First, we need to establish a map to associate each
unique element in the doubly blocked Hankel matrix with
a value. Our map starts with the element value at zero and
incrementally increases by one as we traverse to the next
element. The doubly blocked Hankel matrix has a two-tier
structure. For the outer layer, we traverse each block of the
first row from left to right, and then each block of the right-
most column from top to bottom, forming a L-shaped path.
Within each block, the path is similar, i.e., first traversing
all elements of the first row from left to right, then each
element of the rightmost column from top to bottom. After
completing the traversal, we have mapped an integer to each
unique value in the doubly blocked Hankel matrix. Using the
same example in Section 2, our map is illustrated in Fig. 2.
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Figure 2. Indices corresponding to the degrees of the input
polynomial. Starred elements are the reverse of the indices
for the kernel polynomial. Bold elements are the indices for
the result polynomial.
Since the antidiagonal blocks of a doubly Hankel matrix

are identical, and within each block, the elements on the
antidiagonals are also identical, the positions of the elements
in this map encompass all the non-repetitive elements of
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Table 2. Time Complexity Analysis
Method Time Complexity
𝑖𝑚2𝑐𝑜𝑙 +
𝑀𝑀

𝐾ℎ × 𝐾𝑤 ×𝑂ℎ ×𝑂𝑤︸                       ︷︷                       ︸
matrix-vector multiplication

Traditional
FFT

(𝐼𝑤 +𝐾𝑤 ) (𝐼ℎ +𝐾ℎ ) (log(𝐼ℎ +𝐾ℎ ) + log(𝐼𝑤 +𝐾𝑤 ) ) × 2︸                                                                        ︷︷                                                                        ︸
FFT on input and kernel

+ (𝐼ℎ +𝐾ℎ ) ∗ (𝐼𝑤 +𝐾𝑤 )︸                        ︷︷                        ︸
element-wise multiplication

+ (𝐼𝑤 +𝐾𝑤 ) (𝐼ℎ +𝐾ℎ ) (log(𝐼ℎ +𝐾ℎ ) + log(𝐼𝑤 +𝐾𝑤 ) )︸                                                                  ︷︷                                                                  ︸
IFFT

Fine-grain
FFT

𝐼ℎ × 2𝐼𝑤 log(2𝐼𝑤 )︸                  ︷︷                  ︸
FFT on input blocks

+𝐾ℎ × 2𝐼𝑤 log(2𝐼𝑤 )︸                   ︷︷                   ︸
FFT on kernel blocks

+ (𝑂ℎ × 𝐾ℎ × 𝐼𝑤 )︸               ︷︷               ︸
element-wise multiplication

+ (𝑂ℎ × 2𝐼𝑤𝑙𝑜𝑔 (2𝐼𝑤 ) )︸                      ︷︷                      ︸
IFFT

Our Poly-
Hankel
Method

(𝐼ℎ × 𝐼𝑤 +𝐾ℎ × 𝐼𝑤 ) log(𝐼ℎ × 𝐼𝑤 +𝐾ℎ × 𝐼𝑤 )︸                                                        ︷︷                                                        ︸
FFT on input polynomial

+ (𝐼ℎ × 𝐼𝑤 +𝐾ℎ × 𝐼𝑤 ) log(𝐼ℎ × 𝐼𝑤 +𝐾ℎ × 𝐼𝑤 )︸                                                        ︷︷                                                        ︸
FFT on kernel polynomial

+ (𝐼ℎ × 𝐼𝑤 +𝐾ℎ × 𝐼𝑤 )︸                     ︷︷                     ︸
element-wise multiplication

+

(𝐼ℎ × 𝐼𝑤 +𝐾ℎ × 𝐼𝑤 ) log(𝐼ℎ × 𝐼𝑤 +𝐾ℎ × 𝐼𝑤 )︸                                                        ︷︷                                                        ︸
IFFT

Table 3. Space Complexity Analysis
Method Space Complexity
𝑖𝑚2𝑐𝑜𝑙 +
𝑀𝑀

𝐾ℎ × 𝐾𝑤 ×𝑂ℎ ×𝑂𝑤︸                       ︷︷                       ︸
im2col expanded matrix

Traditional
FFT

(𝐼ℎ +𝐾ℎ ) (𝐼𝑤 +𝐾𝑤 )︸                     ︷︷                     ︸
padded input for FFT

+ (𝐼ℎ +𝐾ℎ ) (𝐼𝑤 +𝐾𝑤 )︸                     ︷︷                     ︸
padded kernel for FFT

+ (𝐼ℎ +𝐾ℎ ) (𝐼𝑤 +𝐾𝑤 )︸                     ︷︷                     ︸
output of element-wise multiplication

Fine-grain
FFT

(𝐼ℎ × 2𝐼𝑤 )︸       ︷︷       ︸
FFT result of input blocks

+ (𝐾ℎ × 2𝐼𝑤 )︸         ︷︷         ︸
FFT result of kernel blocks

+ (𝑂ℎ × 2𝐼𝑤 )︸         ︷︷         ︸
output of element-wise multiplication

Our Poly-
Hankel
Method

(𝐼ℎ × 𝐼𝑤 +𝐾ℎ × 𝐼𝑤 )︸                     ︷︷                     ︸
padded input polynomial

+ (𝐼ℎ × 𝐼𝑤 +𝐾ℎ × 𝐼𝑤 )︸                     ︷︷                     ︸
padded kernel polynomial

+ (𝐼ℎ × 𝐼𝑤 +𝐾ℎ × 𝐼𝑤 )︸                     ︷︷                     ︸
output of element-wise multiplication

the doubly Hankel matrix 𝐴. To construct the polynomial
𝑈 (𝑡), we take elements in the map as the powers of 𝑡 and
multiply them by the corresponding elements of 𝐴. In order
to construct the polynomial𝐴(𝑡), we take all elements in the
map to represent powers of 𝑡 , thereby constructing terms of
𝑡 . Subsequently, the corresponding elements from 𝐴 in the
map are used as coefficients for these terms. By summing all
these terms together, we obtain the polynomial 𝐴(𝑡). After-
wards, we use the map to construct the polynomial𝑈 (𝑡). We
extract the first row of the map, referred to as a vector, and
perform an inverse operation on it. Similarly, we then use
the elements at the corresponding positions of this vector
as powers of 𝑡 to construct terms of 𝑡 . The corresponding
elements of 𝑈 at these positions are used as coefficients for
these 𝑡 terms. We sum all these terms to obtain the polyno-
mial 𝑈 (𝑡). Finally, we multiply 𝐴(𝑡) with 𝑈 (𝑡) to obtain the
resulting polynomial 𝐷 (𝑡). Additionally, it is necessary to
extract coefficients from the polynomial 𝐷 (𝑡) to construct
the final result vector 𝐷 . We extract the rightmost column
of the map and treat it as a vector. Using the elements of this
vector as indices, we identify terms in 𝐷 (𝑡) where the power
of 𝑡 matches these indices. We then extract the coefficients of
these terms and, following the order of indices in the vector,
construct a new vector. This is the result vector 𝐷 .

3.2 Network Channels

The technique described so far works for the convolution
induced in single-channel neural networks. The rearrange-
ment of the input and kernel so far are also made for this

assumption. Neural networks normally have multiple chan-
nels. We have two viable options to support multiple chan-
nels. The first option involves merging all input channels
and then performing FFT on the merged channels, as our al-
gorithm naturally aggregates the outcomes of different chan-
nels. However, this approach increases the FFT size. The alter-
native is to execute the FFT on each input channel individu-
ally and subsequently sum their outputs. The computational
complexity of the former approach is 𝑂 (𝐶𝐼ℎ𝐼𝑤 log(𝐶𝐼ℎ𝐼𝑤) +
𝐶𝐾ℎ𝐼𝑤 log(𝐶𝐾ℎ𝐼𝑤)), The latter has a complexity of
𝑂 (𝐶𝐼ℎ𝐼𝑤 log(𝐼ℎ𝐼𝑤) + 𝐶𝐾ℎ𝐼𝑤 log(𝐾ℎ𝐼𝑤) + 𝐶𝑂ℎ). Our experi-
mentation reveals that an increase in input size significantly
increases the execution time for FFT, surpassing the time
needed for summing different channels. Consequently, we
opt for the second method, performing FFT on separate chan-
nels and adding the outputs during element-wise multiplica-
tion.
Typically, convolution operations require padding. Thus,

at this stage, zero-padding is applied at the beginning and the
end of the input as per specific requirements.Moreover, given
our adoption of the overlap-save technique for optimization,
additional zero-padding at the start and end of each batch is
essential to meet the overlap-save criteria. More specifically,
the handling of input is the same for multi-channel as for
single channel. The handling of kernel, however, needs to be
adapted for the multiple channel scenario. The adaption is
actually quite simple—we just need to use non-overlapping
degrees in the kernel polynomial 𝑈𝑡 defined in Eq. 11 for
kernels in different channels. The first step is to reverse the
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position of each element within the kernel. Subsequently, as
depicted in Figure 2, we rearrange the kernel. Then because
the kernel polynomials for different channels are not over-
lapping, these polynomials can be merged in to a combined
kernel polynomial.
The combined kernel size should be: KernelSize = (𝐾ℎ −

1) × 𝐼𝑤 + 𝐾𝑤 . Each row of the kernel necessitates padding
with 𝐼𝑤 − 𝐾𝑤 zeros. In this step, the last row does not re-
quire additional padding. Subsequently, we employ cuFFT
to perform FFT on both input and kernel. Since cuFFT is
highly optimized and perform best for FFT sizes satisfying
2𝑎 × 3𝑏 × 5𝑐 × 7𝑑 , further padding at the end is mandated
to meet cuFFT’s criteria. Our tests indicate that FFT sizes as
multiples of 2 exhibit optimal performance. Hence, we pad
the kernel size to the nearest multiple of 2.

Thereafter, the same element-wise multiplication between
the input polynomial and the merged kernel polynomials
is conducted, followed by the summation of outputs across
different channels, as well as the IFFT on the result. Again
because the relevant degrees constructed for different chan-
nels are not overlapping, the result can be naturally dissected
into corresponding channels. The final step is different for
multi-channel. We select the corresponding IFFT values and
copy them into the result array. For each batch, we disre-
gard the first (𝐾ℎ − 1) × 𝐼𝑤 + 𝐾𝑤 − 1 values, selecting the
subsequent𝑂𝑤 values. Then, we skip the next 𝐾𝑤 − 1 values,
continuing this pattern for the remaining output. It is crucial
to account for the index offsets caused by overlap-save and
zero-padding during index calculation.

4 Evaluation and Performance Analysis
We evaluate the proposed convolution method from three as-
pects: (1) API-level performance comparison with NVIDIA’s
cuDNN library [4] and Zhang’s Fine-grain FFT method, (2)
application-scenario evaluation with networks developed in
PyTorch[18], a leading deep learning programming frame-
work, by replacing PyTorch’s invocation of cuDNN for con-
volution with our own implementation, and (3) performance
profiling to analyze and understand the source of perfor-
mance improvement. Our method is referred as PolyHankel.
Each data point is the average of ten runs. The runs are

typically quite stable with variance at around 3%. Since the
performance of convolution is independent to input val-
ues, we randomly generate inputs and use the same input
for each data point. The versions of cuDNN and PyTorch
are 8.9 and 2.1, respectively. Specifically, cuDNN has mul-
tiple variants of the GEMM method, including the original
GEMM method, the Implicit method and the Implicit Pre-
computed method [15]. In our experiment, all the measure-
ments with regard to the GEMM method, both for perfor-
mance comparison and for profiling, are based on cuDNN’s
IMPLICIT_PRECOMP_GEMM algorithm flag, because it is
typically the fastest variant within the GEMM algorithm
family.

we evaluate on three Nvidia GPUs, GeForce 3090Ti, A10G
and V100. In our experiments, CPU only serves as the com-
mand processor and has a negligible impact on performance.

4.1 API Performance Comparison

We compare PolyHankel with four other state-of-the-art
convolution methods, three from cuDNN and the other being
Zhang’ recent Fine-grain FFT method. cuDNN is NVidia’s
own NN library that is deeply optimized and provide some of
the fastest convolution implementations. The three cuDNN
methods we compare to are 𝑖𝑚2𝑐𝑜𝑙 +𝐺𝐸𝑀𝑀 , 𝐹𝐹𝑇 and
𝑊𝑖𝑛𝑜𝑔𝑟𝑎𝑑 , which are the more frequently used convolution
methods. We use the same API design in PolyHankel as that
in cuDNN. We measure and compare the end-to-end API
execution time.

The performance of convolution is most sensitive to input
sizes and kernel sizes. As mentioned in Section 1, no method
can outperform others in all cases. A normal practice is
that developers will choose different convolution methods
for different cases. Therefore, we vary these parameters to
measure the strengths and weaknesses of PolyHankel in
different parts of the parameter space. The experiment is
then categorized into groups. Each group fixes the values
of one parameter and varies the other one. Thus, we can
study how this parameter impact the overall performance
of the algorithm. Notably the performance of convolution
is insensitive to the value of inputs and weights. Therefore,
the performance we observe at the API level is going to be
consistent with that in real-world networks.
Performance vs. input sizes: Figure 3 shows the per-

formance of the three methods over input sizes from 4 to
224. In this group of experiments, the kernel size is set to 5,
a widely used kernel size configuration, and the batch size
is 128. Generally PolyHankel outperforms all other methods
for sizes larger than 100. On the three types of GPU, Poly-
Hankel achieves the maximal speedups over the next best
method of 19.3%, 11.9%, 48.9%, respectively.
Performance vs. kernel sizes: Figure 4 shows the per-

formance of the methods over kernel sizes from 4 to 25. The
Winograd method has only one data point in the experiment
because cuDNN only support one kernel size for this method.
PolyHankel has notable speedups over all other methods for
kernel sizes < 15, with the maximal speedups over the next
best method on the three GPUs being 34.6%, 43.1%, 33.6%,
respectively. In NN applications, the typical choices of kernel
size are between 3 to 9, with 3 × 3 and 5 × 5 being the most
common. So PolyHankel will have advantages in common
application scenarios.
Notably, The FFT convolution tends to be constant and

insensitive to the kernel size, because it zero-pads the kernel
to be the same size as the input image and kernel size has
nearly no effect on the performance. In contrast, the perfor-
mance of our method decreases with larger kernel sizes. This
is because the FFT size in PolyHankel is determined by the
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Figure 3. API Performance Comparison on Different Input
Sizes

size of kernel vectors. When the kernel vector size reaches
the next power of two, the FFT size will be doubled.
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Figure 4. API Performance Comparison on Different Kernel
Sizes. Here the Winograd method has only one data point,
because cuDNN only supports the kernel size 3 for the Wino-
grad method.
The 𝑖𝑚2𝑐𝑜𝑙 + 𝐺𝐸𝑀𝑀 method loses performance as the

kernel size increases, mainly because it fully unrolls matrices,
and the matrix sizes grow quadratically with the kernel size.
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However, when the kernel size is small, 𝑖𝑚2𝑐𝑜𝑙 + 𝐺𝐸𝑀𝑀
has better performance over the FFT method because the
unrolled matrix is small and the high performance of matrix
multiplication routine in cuDNN outweighs the saving of
algorithmic complexity in the FFT method.
Performance vs. channel counts: Figure 5 shows the

performance comparison of our method over all cuDNN’s
methods, including GEMM and its variants, FFT and its tiled
variant, Winograd and its nonfused variant. The channel
count changes from 1 to 128. The setup of other parameters is
input size = 112∗112, kernel size = 3∗3. Generally PolyHankel
outperforms all cuDNN’s methods. Particularly notable is
that the cuDNN’s methods show quite diverse performance
trends. In other words, there is no single cuDNN method
performing best across all channel counts.
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Figure 5. API Performance Comparison on Different Chan-
nel Counts. The comrison is conducted against all cuDNN’s
methods with input size=112, kernel=3 and channel count
changing from 1 to 128 on 3090Ti. Both axes are in log scale.
4.2 Performance with Neural Networks

We also evaluate PolyHankel’s performance in neural net-
works. The evaluation is done in PyTorch, one of the most
popular frameworks for developing deep-learning applica-
tions. In this experiment, we replace PyTorch’s invocation
to cuDNN for convolution with calls to our method that has
almost the same interface design. We compare the perfor-
mance before/after the replacement for a set of synthetic
networks. All the networks have 20 layers but have various
layer designs including connection configurations and kernel
sizes. We modified the code of PyTorch version 2.1 for this
experiment. The fine-grain FFT method is not used in this
experiment because the provided code was developed for
another NN development environment Caffe [9] and can’t
be ported to PyTorch without significant modifications.
Figure 6 shows the execution time over input sizes vary-

ing from 4 to 224. On average, PolyHankel achieves the
speedups over the next best method of 1.36, 1.59 and 2.08 on
3090Ti, A10G and V100, respectively. The data shows that
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Figure 6. End-to-end Performance Comparison in PyTorch
for Neural Networks. The data is the accumulated time spent
on the convolution operator. Within a NN, convolution will
be called with widely different parameter values such as
input size, channel size, etc.

PolyHankel maintain its performance advantage over the
other cuDNN methods end-to-end in more realistic applica-
tion scenarios.
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We want to specifically point out that the “fluctuations”
in the performance are not the reflection of the noise in mea-
surement. The fluctuation is caused by that one method is
used through the whole network. In this experiment we force
PyTorch to use one convolution method, and accumulate the
time spent on that convolution operator. However, even for
a simple network, convolution is called with different pa-
rameter values. For example, layer 1 might call with input
size 112 and kernel size 3, but layer 2 will change to 56 and
5. Therefore even within one network, there can be places
one method is better than others but lose in other places.
Ideally, heuristics should be developed to choose the best
convolution method for each API invocation.

4.3 Performance Counter Profiling and Analysis

In order to explain the performance gain of PolyHankel, we
profile all the methods with the GPU performance counters.
The performance difference is mostly caused by the different
number of memory transfers and floating point operations.
Section 2.4 gives the theoretical analysis of these two metrics.
In this experiment, we want to verify and correlate with the
result of the theoretical analysis with NVidia CUDA’s per-
formance counters that record the total number of memory
transactions and the number of floating point operations.

Figure 7 shows the performance counter profiles on A10G
with input sizes varying from 4 to 224. We can see from the
figure that the memory performance and the operational
performance align well with the execution time on all the al-
gorithms. It shows that PolyHankel generally has the lower
number of operations and the lower number of memory
transactions. In contrast, 𝑖𝑚2𝑐𝑜𝑙 +𝑀𝑀 has good operational
efficiency but high memory overhead. cudnn_FFT is just the
opposite, i.e., low number of memory transactions but high
operational overhead. Winograd is good on both metrics, but
has relatively higher memory overhead than PolyHankel,
especially for larger input sizes. This experiment with perfor-
mance counters explains why PolyHankel performs better
over other method in a broad range of invocation scenarios
is that it reaches a better performance tradeoff between the
memory and operational efficiency.

5 Conclusion and Future Work
This paper presents a polynomial multiplication derived
approach for solving convolution in neural networks. Our
method constructs a conceptual polynomial for the im2col
matrix and another polynomial for the kernel in a special
way, so that convolution, originally in the form of the multi-
plication between the im2col matrix and the kernel, can be
converted to a polynomial multiplication coefficient-finding
problem. The polynomial coefficient problem can then be
solved efficiently with FFT. We evaluate our methods on
multiple application scenarios on three NVIDIA GPUs, and
achieves significant speedups over broad input scenarios.
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(a) Profiles of Floating Point Operations. PolyHankel typically has
the lowest number of floating operations. The 𝑖𝑚2𝑐𝑜𝑙 (GEMM)
and the Winograd methods also have low numbers of operations,
but the 𝐹𝐹𝑇 method has the highest number of operations.
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(b) Profiles of Memory Transactions. PolyHankel typically has
the lowest number of memory transactions. In contrast to the
operational efficiency comparison, the 𝑖𝑚2𝑐𝑜𝑙 (GEMM) typically
has the highest number of memory transactions , but the 𝐹𝐹𝑇
and the Winograd methods have low number of transactions.

Figure 7. Profiling performance counters vs. input sizes.
One specific task for future work is to support tensor cores.

Our method does not currently use tensor cores. We have
found that whether or not our method is faster than cuDNN’s
methods that do use tensor cores is highly dependent on
which kernel cuDNN dispatches, which in turn depends on
the precision requirement, the microarchitecture, and the
shape of the inputs. We believe our method could exploit
tensor cores via the matrix form implementation of FFT and
the elementwise multiplication, but for now this is future
work.
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